

ICTを活用した 情報化施工の 普及促進

国土交通省 北海道開発局 建設部 地方整備課長 (前事業振興部機械課長)

岳本

1 はじめに

我が国の建設業は、建設投資額の減少や低い労働 生産性、少子高齢化による熟練労働者不足、建設現 場の安全確保など多くの課題を抱え、早急な対応が 求められています(図-1)。

また、公共工事の品質確保の促進に関する法律 「品確法」の施行や総合評価方式による入札契約制 度の見直しなど、建設施工を取り巻く環境も大きく 変化しています。

このような中、国土交通省では、施工品質・施 工効率の向上等を図るため、一部の大規模工事 等で既に導入されているICT (Information and Communication Technology:情報通信技術)を活 用した新しい施工技術「情報化施工」の普及促進を 図るため、平成20年2月に産学官の強力な連携の下 「情報化施工推進会議」が設置され、同年7月に「情 報化施工推進戦略」が策定されました。

北海道開発局においても試験施工や工事見学会な ど普及に向けた取り組みを推進しており、これらの 内容を紹介します。

建設投資の急激な減少 低い労働生産性

- 建設投資 : ピーク約84兆円(H4) → 約53兆円(H18) 約6割に減少○ 建設業者数 : ピーク約60万業者(H11) → 54万業者(H17) ほぼ横ばい
- 〇 他産業と建設業との年間の総労働時間と賃金支給額 : 多い労働時間と低い賃金
- 少子高齢化(魅力の低下、就業者の高齢化、将来の担い手不足の懸念)
- 〇 建設業就業者数の見通し
- 今後10年でピーク時(H9)の75%まで減少、20年でピーク時(H9)の60%まで減少 建設就業者の43%が50歳以上

施工現場の事故

○ 建設業における死亡災害のうち「建設機械等の事故」が1/4占める

地球温暖化問題(CO2削減)

○ 全産業のCO₂排出量のうち、土木は約1割

国内外の厳しい受注競争

※出所:建設産業政策2007他

図 - 1 建設産業を取り巻く課題や状況の変化(背景)

2 情報化施工とは

情報化施工はICTを活用し、生産性の向上や品質 の確保を図ることを目的とした新しい施工技術で す。GPSなどによる建設機械の位置情報を3次元設 計データと瞬時に照らし合わせ、ガイダンス機能に よってオペレーターの操作を支援したり、装置の一 部を自動制御します。

図 - 2の上段の従来型の機械施工と比べて下段の 情報化施工では、丁張り設置や検測を必要とせず、 施工精度や作業効率が大幅に向上します。

図 - 2 情報化施工のイメージ

施工データについて施工業者と発注者の情報共有 によって、リアルタイムで施工状況を把握し、迅速 な判断や指示が可能となります。

また、維持管理段階での施工データの活用を図る ことが期待されます。

さらには施工精度の向上を前提とした合理的な設 計など施工以外の他のプロセスでも情報を活用する ことによって、建設生産プロセス全体の生産性向上 や品質の確保に結びつけることが期待されます。

このように情報化施工は建設生産に革新的な変化 をもたらす可能性を有しており、建設イノベーショ ンと呼ぶに値する技術です。

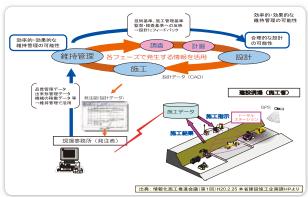


図 - 3 情報化施工が目指す建設イノベーション

3 施工事例と効果

(1) ICTモータグレーダによる路盤敷均し

自動追尾トータルステーションにより計測したブ レードの位置及び傾斜センサにより計測したブレー ドの傾きを予め入力した3次元設計値と比較し、ブ レードの操作を自動制御します。

図 - 4 ICTモータグレーダによる路盤整正

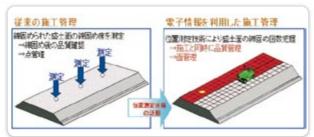
図 - 5 日当たり施工量の比較 北海道縦貫自動車道 士別市 (新直轄)

オペレータは前後進操作のみに集中できるため、 施工実績では施工効率が標準施工と比較して1.4倍 となりました。

さらに標準施工で必要となる測量、丁張り設置、 検測の各作業が情報化施工では省略できるので、工 期短縮が図られます。

また、出来型は設計値の±10mm以内に収まって おり、高い施工精度が確保されています。

従来の特定点による点的な管理から、施工面全体 での面的かつ均一な施工管理が可能となります。


(2) ICT振動ローラによる盛土の締固め

運転席のモニターによって施工面全体の締固め回 数が色分けした走行軌跡で確認できます。

図 - 6 ICT振動ローラによる盛土の締固め

従来の施工管理方法である締め固め度の測定は点 管理ですが、ICT振動ローラでは、締め固め回数を 面的に把握し、施工と同時に品質管理が可能となり ます。よって、必要以上の締固めを行わないで済む ことや、締固めの重なりしろが最小限に出来ること から、施工効率が1.1倍となっています。

品質管理方法の比較

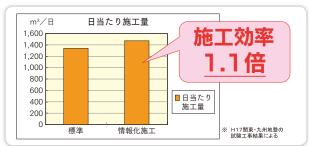


図 - 8 日当たり施工量の比較

(3) ICTバックホウによる法面整形

図 - 9 ICTバックホウによる法面整形 (夕張川築堤工事)

バックホウに設置したGPS、ストロークセンサ、 傾斜センサを使って機械の向き、バケット傾き、刃 先上下左右の位置などを、重機に搭載したモニター に表示し、設計形状・設計基盤線と、常に操作状況 を比較しながら施工ができます。従って、現地丁張 りは不要となり、熟練度が低いオペレータでも高い 施工精度が確保できます。

図 - 10 モニター画面

試験施工による評価結果によれば、情報化施工区 間は設計データに対して標高差のばらつきが少なく 均一な出来形が得られています。

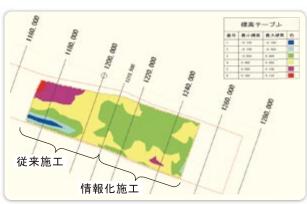


図 - 11 出来形精度の比較結果(設計値との標高差分布)

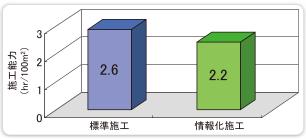


図 - 12 作業時間の比較

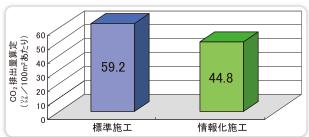


図 - 13 CO₂排出量の比較

情報化施工では単位施工面積あたりの作業時間が 短縮され、1.2倍の施工効率でした。

施工効率の違いによるバックホウの稼働時間の差 をCO₂排出量に換算すると、情報化施工では約24% 縮減されました。

(4)建設業を取り巻く課題解決の可能性

情報化施工の活用によって、施工効率の向上、施 工精度の確保、品質向上、安全性向上、CO₂排出 量の削減、技術競争力の強化などが期待され、建設 産業を取り巻く課題の解消に向けて有効な手段とな る可能性があります。

図 - 14 建設産業を取り巻く課題解決の可能性

4 普及促進への取り組み

(1)試験施工

情報化施工のメリットについて業界や発注者の理 解が十分ではないことから、試験施工を通じて導入 効果の定量的評価に取り組んでいます。評価結果を もとに導入に適した施工規模や施工条件を明らかに していく必要があります。また、現場見学会・講習 会などの啓蒙活動にも取り組んでいます。

平成20年度は全国の地方整備局及び北海道開発局 で河川土工13件、道路土工12件、舗装工10件、ダム 3件、計38件の試験施工を実施しました。

今年度はさらに大幅に拡大して試験施工を実施す る予定です。

(2)監督・検査要領

受注業者が情報化施工に対応した出来型管理を 行っていても、発注者側が従来型の巻き尺、レベル、 トランシットによる監督・検査を行う場合、2重管

理となり非効率が生じます。

道路土工では、平成19年3月に 「施工管理データを搭載したトー タルステーションによる出来形管 理要領(案) が制定されており、 今後も舗装工編などに工種拡大予 定であり、2重管理の問題は解消 されつつあります。

(3)総合評価方式

総合評価方式において情報化施 工による技術提案が増加すること が予想され、情報化施工の特徴や 導入効果を踏まえた技術力の適正 な評価が求められます。

(4) データ共有

施工業者間で情報化施工用の3次元データを共有 できるようデータ交換標準が作成されています。

また現在、設計業務の成果品が情報化施工に適用 可能なデータ形式となっていないため、施工業者は 3次元施工データを手作業で作成しています。 CADデータを情報化施工用の3次元データに簡易 に変換できるソフトウェアが開発され、近々公開さ れる予定です。

(5)技術者の育成

情報化施工に対応できる技術者を育成することも 重要な課題であり、日本建設機械化協会施工技術総 合研究所において研修が行われています。

(6) 導入コスト

情報化施工の普及が進んでいないことから機器・ システムの価格が高く、導入の障害となっています。 リース機器の普及やレディオプションといって後 からGPSやセンサーを購入または借りて装着すれば 情報化施工機器として使えるタイプも開発されてい ます。

(7) ロードマップ

平成20年7月に国土交通省が公表した「情報化施 工推進戦略」に示された普及促進のロードマップを 図 - 15に示しています。現在、国土交通省としては、 試験施工による適用の拡大・検証に取り組んでおり、 今後は総合評価方式による適用の拡大にも取り組ん でいくこととなります。

また、業界側としては情報化施工機器・システム の普及や技術者の育成に取り組んで頂き、以上によ り2012年までに情報化施工を標準的な工法として普

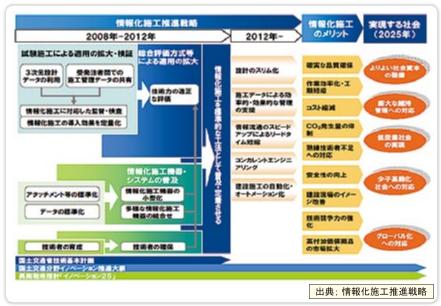


図 - 15 ロードマップ

及・定着させることを目指しています。

さらに将来的には、施工精度の向上による品質・ 出来型のばらつきの減少を前提として設計のスリム 化や施工データの維持管理への活用についても検討 し、情報化施工のメリットを拡大していくこととな ります。

5 おわりに

北海道開発局では、今年3月に情報化施工の推進 体制として、技術開発委員会に「情報化施工推進部 会|を設置しました。

平成20年度は河川土工1件、舗装工等(道路)2 件の試験施工を実施し、今年度は18件以上の工事に 拡大して実施する予定です。各地域において現場見 学会も実施することとしています。

また、産主体でも、情報化施工推進検討WG(事 務局:他日本建設機械化協会北海道支部)が設置さ れ、普及に向けた民間側の課題の検討が進められて います。

積雪寒冷地である北海道では、施工に適した期間 が限られ、秋期の日没が早く事故の危険が高い、品 質確保が難しい寒冷期施工、施工精度の確保が難し い泥炭性軟弱地盤などの特有の現場条件があります。

これらの技術的課題解決に向けても、施工効率向 上による工期短縮や施工データによる品質確保と いった情報報化施工の利点を活かし、北海道におい て普及させる意義は大きいと考えています。