

岩手・宮城内陸地震の 調查報告概要

HRS株式会社 技術本部 技術副本部長 宏照 大浦

1 はじめに

平成20年6月14日午前8時43分、岩手県内陸南部 の深度8kmに震源を有する、マグニチュード7.2の地 震が発生しました。この地震で、岩手県奥州市と宮 城県栗原市において震度6強を観測し、がけ崩れや 土石流などにより、13名の方が亡くなり、10名の方 が行方不明となるなど、多くの被害が発生しました。

財団法人北海道道路管理技術センターが主催する 道路管理技術委員会では、この地震を受け、北海道 大学教授三浦清一先生を団長とする総勢14名の調査 団を組織し、平成20年7月29日~8月1日の日程で、 被災地の現地調査を行いました。以下ではそ の概要についてご報告します。

表1 平成20年 岩手・宮城内陸地震調査団名簿

(財) 北海退退路官埋技術センター王催(退路官埋技術委員会)			
	氏	名	所属
団 長	三浦	清一	北海道大学大学院 工学研究科 教授
調査	石川	達也	北海道大学大学院 工学研究科 准教授
	川村	信人	北海道大学大学院 理学研究院 准教授
	横濱	勝司	北海道大学大学院 工学研究科 助教
	田近	淳	北海道立地質研究所 環境地質部 部長
	伊東	佳彦	(独)土木研究所寒地土木研究所 防災地質チーム 上席研究員
	岡田	慎哉	(独)土木研究所寒地土木研究所 寒地構造チーム 研究員
	武田	覚	(社)地盤工学会 北海道支部 支部長
	大浦	宏照	HRS(株) 技術本部 技術副本部長
	山田	司	(株)ドーコン 地質部 主任技師
	牛渡	聡	(株)構研エンジニアリング 地質部 部長
	長瀬	眞央	(株)開発工営社 地質部 総括管理技師
	後藤	幸雄	(財)北海道道路管理技術センター
	江刺	亨	(財)北海道道路管理技術センター

2 被害の分布状況

今回の地震では、図1に示すように河道閉塞が15 箇所、交通規制が25箇所で発生しました。これらの 被災は、そのほとんどが斜面崩壊や落石等の斜面災 害を起因とするもので、地震動による橋梁等の構造 物の直接的被害はほとんど発生していません。

また地震を引き起こした断層は、図1に示した余 震分布域付近で、東側の地殻が西側に潜り込む「逆 断層型」が想定されています。地震による被害は、余 震の分布域よりも西側に多く認められ、断層の上盤 側に被害が集中して発生したということができます。

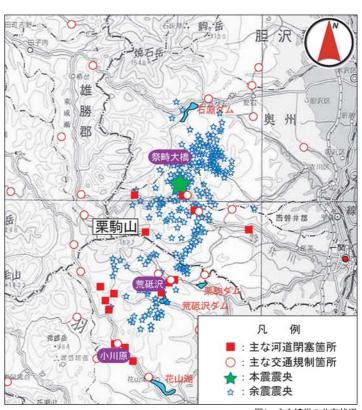


図1 主な被災の分布状況

3 被害の状況

(1) 荒砥沢の地すべり

今回の地震では多くの斜面崩壊や地すべりが発生 しましたが、荒砥沢の地すべりはその中でも最大の ものです。

地すべりの規模は、幅0.9km、長さ1.3km、最大 滑落崖高150m、移動土塊量7000万m³です。札幌駅 から大通まで約0.9km、大通公園の長さが約1.3km、 テレビ塔の高さが約150mですから、相当大規模な ものです。

図2に示す写真の奥にあるのが今回の地すべり で、手前側にあるのが荒砥沢ダムの貯水池です。今 回の地すべりでは、主たる滑動の方向がダム湖に対 し斜交していたため、移動土塊の大半は図2右側の 山に乗り上げるようにして停止しています。もし地 すべりブロックが写真手前側のダム湖に直接流入し ていたら、被害は相当大規模なものとなった可能性 があります。

この地すべりにより、地すべり地内を通る市道が

荒砥沢の地すべり全景

荒砥沢地すべり地内の市道

寸断され(図3)、大きな損害を受けましたが、す ぐそばにある荒砥沢ダム本体には、大きな被害があ りませんでした。

(2)祭畤大橋の落橋

震央の近くをとおる国道342号に架かる祭畤大橋 は、今回の地震により最も大きな損害を受けた橋梁 です(図4)。国道橋が損傷し、河道に落下してい る様子は、事故直後から何度も報道されました。

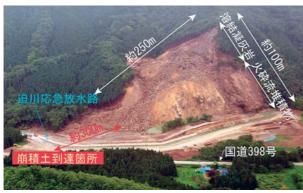
祭畤大橋は、橋長94mで橋脚が2本ある鋼製桁の 橋でした。図4に白破線で示した地盤が矢印の方向 に約10m変位したことが落橋の原因でした。この地 盤の変位により、道路には図5に示したような、比 高差1m以上の段差地形が発生しています。

地震による橋梁の被害は、地震動により橋が揺さ ぶられることにより生じるのが普通ですが、今回は 橋台の支持地盤の大変位により被害が発生したもの でした。

また図4には、家屋や他の橋も写っていますが、 これらのほかの構造物には、機能上の支障となるよ うな大きな被害はありませんでした。

祭畤大橋付近の被災状況

祭畤大橋背後の道路の変状 (図4①付近)



(3) 国道398号小川原の崩壊と河道閉塞

国道398号の小川原地区では、国道から水平距離 で約300m離れた地点で岩盤崩壊が発生し、その土 砂により国道が埋没し、付近を流下する道川を閉塞 するという被害が発生しました(図6)。崩壊の規 模は約49万m³とされており、平成16年にえりも町 庶野で発生した岩盤崩壊の10倍以上に達する、大規 模なものでした。

崩壊により発生した土砂は、斜面の直下を流れ る迫川を堰止め、対岸の国道398号まで達しました。 河道閉塞により上流側には堰止め湖が出来ました が、調査を実施した時点では応急排水路が完成して いました。

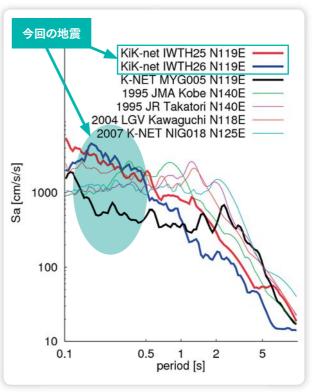
崩壊が発生した斜面は、上部に亀裂が発達した硬 質な溶結凝灰岩が分布し、下部に亀裂が少なく軟質 な火砕流堆積物が分布していました。上部に硬い地 層が、下部に軟らかいものが分布する構造を「キャッ プロック構造」と呼びます。このような構造の箇所 では、上部と下部とで地震動に対する応答特性が異 なることが崩壊の一因となったと思われます。

小川原の崩壊と河道閉塞の状況

4 調査を通じて感じたこと

以下では今回の調査を通じて私が感じたことや学 んだことについて述べたいと思います。

(1)揺れ方が違えば被害も違う


冒頭にも述べましたが、今回の地震は震源深度8 km、マグニチュード7.2で、死者行方不明合計23名 の被害がありました。一方平成7年に発生した阪神 淡路大震災は、震源深度16km、マグニチュード7.3 と規模が今回とほぼ同じですが、死者数は6,400人 以上と比較にならないくらい大きな被害が発生しま した。

このような被害程度の違いが生じた理由の一つに

は、岩手・宮城の強震域は中山間地域であったのに 対し、阪神淡路では人口密集地の平野が大きく揺れ たということが挙げられます。

その一方で、荒砥沢や祭畤などの大規模な斜面変 動が発生した箇所のすぐ近くで、民家や橋梁などが ほとんど無傷な状態で確認することが出来ました。 このようにあたかも斜面を狙い撃ちしたような被害 は、どのようなメカニズムにより発生したのでしょ うか?

その理由は今回の地震の揺れ方にあるといわれて います。今回の地震の卓越周期は0.1秒から0.2秒程 度だったのですが、阪神淡路では0.5秒から2秒程 度が卓越していました(図7)。周期 $1 \sim 2$ 秒の「キ ラーパルス」と呼ばれる建物に最も被害を与える震 動成分が今回の地震には少なかったことが、構造物 の被害が比較的軽微であった理由であると考えられ ています。

今回と過去の地震の加速度応答スペクトル (断層法線方向:京都大学防災研究所)

(2) 北海道で想定されている内陸地震の被害は?

今回の地震は逆断層を震源とし、断層の上盤側に 被害が集中していたということを述べました。日本 列島は一般的に東西方向の圧縮場にありますので、 内陸部で発生する地震の多くは逆断層型です。北海 道にもこれまでの調査で、地震を引き起こす可能性 がある活断層が幾つか報告されていますが、これら の多くが逆断層です。

その一例として石狩平野の東側を南北に貫く「石 狩低地東縁断層帯 | の強震動予測図を図8に示しま した。断層は石狩平野の東側、丘陵地域の裾部に位 置しています。しかし丘陵部が石狩平野にもぐりこ む逆断層型の地震ですから、断層の上盤側にあたる 石狩平野一帯が強い地震動に見舞われると想定され ています。

この場合最も深刻な被害が想定される範囲には、 空港・高速道路等の物流の重要施設が集中していま す。しかもこの断層が活動する確率は、日本の主な 活断層の中でも高いグループに属しています。従っ て将来このような地震が発生した場合に、どのよう にして輸送路を確保するか、適切な迂回ルートの整 備など、長期的ビジョンに基づいた道路整備が必要 と考えます。

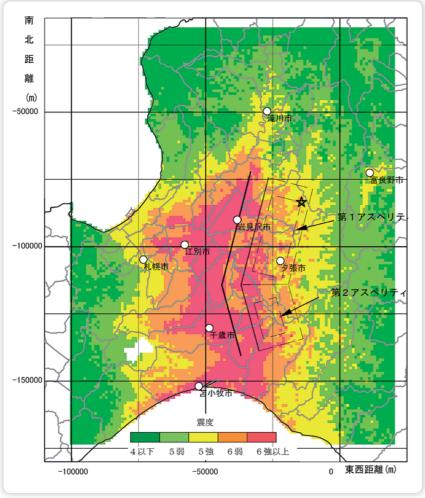


図8 石狩低地東縁断層の強震動予測図(平成16年地震調査研究推進本部)

(3) 広域災害に備えた技術伝承の必要性

土木構造物には長い歴史があります。例えば、一 言に橋梁と言っても昭和40年代に造られたものと昨 今では、設計や施工の方法が全く異なります。普段 から構造物点検をやっているような方を除き、若い 技術者の多くは、古い時代の設計・施工方法を知ら ない場合が多いのが実情ではないでしょうか。

しかし広域災害が発生した場合、短時間に被害状 況を把握するために、多くの技術者が緊急対応に追 われることとなります。この中には上記のような若 手の技術者が多く含まれることになります。

近年様々な場面で技術伝承の必要性が訴えられて いますが、いつか起きる地震などの広域災害に備え るためにも、系統的な技術伝承が必要とされると考 えます。

5 おわりに

今回の岩手・宮城内陸地震の現 地調査は、多くの貴重な経験を 与えてくれました。特に現地調査 においては、団長の三浦教授はじ め多くの先生方のご指導をいただ き、実務では得られないような視 点から現場を捉えることができま した。この経験をこれからの業務 に活用させていただくことを通 じ、道路利用者の方々に還元でき るよう努力したいと思います。ま たこのような機会を与えていただ いた、財団法人北海道道路管理技 術センターの関係各位に衷心より 謝意を表します。